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1 Component models

See Table A.

2 Supplemental evaluation metrics

2.1 Bias and MSE

We compared the FSNetwork-TTW ensemble model’s accuracy in 2017/2018 to the top-performing models

from each team in the training phase. We used the metrics of root mean-squared error (RMSE) and average

bias to measure accuracy of point estimates. Note that the ensemble weights were optimized solely to

maximize log-score, so these accuracy scores are not an indicator of how well the ensemble could do if it

were optimized to minimize point-estimate error. Consistent with the CDC scoring rules, we only evaluated

point estimates within the “scoring bounds” specific to each target, region, and season (see Methods in main

manuscript).

Overall, the FSNetwork-TTW model ranked second in both RMSE and average bias, behind the LANL-DBM

model (Figure A). All selected models showed a negative bias (i.e. underestimation, on average) of the

targets on the wILI scale (week-ahead incidence and peak percentage). The CU-EKF SIRS model showed

particularly low bias for 1- and 2-week-ahead foreacasts, although greater variability led to lower ranks for

RMSE.

In general, these results suggest that using separate weighting schemes for point estimates and predictive

distributions may be valuable.
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Team Model Abbr Model Description Ext.
Data

Mech.
Model

MM
Ens.

FSNetwork EW Equal Weights (number of estimated weights = 0) x
CW Constant Weights (20) x
TTW Target-Type Weights (40) x
TW Target Weights (140) x
TRW Target-Region Weights (1,540) x

CU EAKFC SEIRS† Ensemble Adjustment Kalman Filter SEIRS[1] x x
EAKFC SIRS† Ensemble Adjustment Kalman Filter SIRS[1] x x
EKF SEIRS† Ensemble Kalman Filter SEIRS[2] x x
EKF SIRS† Ensemble Kalman Filter SIRS[2] x x
RHF SEIRS† Rank Histogram Filter SEIRS[2] x x
RHF SIRS† Rank Histogram Filter SIRS[2] x x
BMA Bayesian Model Averaging[3]

Delphi BasisRegression* Basis Regression (epiforecast defaults)[4]
DeltaDensity1* Delta Density (epiforecast defaults)[5]
EmpiricalBayes1* Empirical Bayes (conditioning on past 4 weeks)[6, 4]
EmpiricalBayes2* Empirical Bayes (epiforecast defaults)[6, 4]
EmpiricalFuture* Empirical Futures (epiforecast defaults)[4]
EmpiricalTraj* Empirical Trajectories (epiforecast defaults)[4]
DeltaDensity2* Markovian Delta Density (epiforecast defaults)[5]
Uniform* Uniform Distribution
Stat Ensemble (combination of 8 Delphi models)[5] x

LANL DBM Dynamic Bayesian SIR Model with discrepancy[7] x
ReichLab KCDE Kernel Conditional Density Estimation[8]

KDE Kernel Density Estimation and penalized splines[9]
SARIMA1 SARIMA model without seasonal differencing[9]
SARIMA2 SARIMA model with seasonal differencing[9]

FluSight unweighted avg Average of all models submitted to the CDC[10] x

Table A: List of models, with key characteristics. New ensemble models introduced by this paper are
indicated with the prefix FSNetwork. Component models contributed by individual teams are grouped by
team with team-specific prefixes as follows: CU = Columbia University, Delphi = Carnegie Mellon, LANL
= Los Alamos National Laboratory, ReichLab = University of Massachusetts Amherst, FluSight = CDC
challenge organizers. The FluSight model was not included in the collaborative multi-model ensemble, but is
used as a reference multi-model ensemble in the analysis. The ‘Ext data’ column notes models that use data
external to the ILINet data from CDC. The ‘Mech. model’ column notes models that rely to some extent
on a mechanistic or compartmental model of infectious disease transmission.[11] The ‘MM Ens.’ column
indicates models that are multi-model ensembles. Note that some of the components were not designed as
standalone models (marked with *) and others used single-model ensemble methodologies (marked with †)
(see Methods for more details). S(E)IRS abbreviations stand for Susceptible (Exposed) Infectious Recovered
Susceptible models of disease transmission and SARIMA stands for Seasonal Auto-Regressive Integrated
Moving Average Model (see references for details).
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B: average bias

Figure A: Root mean squared error (RMSE, panel A) and bias (panel B) by target for selected models (with
rank) in the 2017/2018 season. Evaluations are for all weeks in the 2017/2018 season. Models are sorted
with lowest RMSE on right.
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2.2 Probability integral transform

The Probability Integral Transform (PIT) is an evaluation metric that can be used to assess the calibration of

a predictive model. A common application of PIT is testing whether a set of values from an unknown target

distribution can be accurately modeled by one or more predictive distributions. In brief, statistical theory

tells us that if we plug the set of observed values (which come from the unknown target distribution) into

the cumulative distribution function of the predicted distribution, the output, otherwise known as the PIT

values, should be uniformly distributed if the predicted distribution matches the true distribution.[12, 13]

Therefore, looking at the PIT values provides a quantitative and qualitative assessment of the predictive

model calibration by comparing the shape of the histogram of PIT values to a uniform distribution. Intu-

itively, the PIT measures how often a model’s probabilistic assessment is true, i.e. does an event that the

model says has a 10% chance of occuring really only occur 10% of the time. Systematic deviations from the

expected uniform distribution may indicate lack of calibration in some aspects of the predictive model.

In our application, we evaluate the set of all probabilistic forecasts of the five targets on the wILI scale (1

through 4 week-ahead wILI percent and the peak percentage) from the FSNetwork-TTW model using PIT.

For the 2017/2018 influenza season, we obtained a PIT value from each predictive distribution based on

region, target, and week of season. As in other evaluations presented here, we only considered forecasts from

the time-period of interest for the CDC, depending on the timing of the peak for each region-season. We

rounded each PIT value to the nearest tenth of a decimal place and plotted them on a historgram with ten

bars, one for each decile of the Uniform(0,1) distribution. We computed a Monte Carlo confidence interval

under the null hypothesis that the PIT values are independent and identical draws from a Uniform(0,1)

distribution, conditional on the number of PIT values.

In the 2017/2018 season, the FSNetwork-TTW model showed good calibration for all week-ahead targets

(Figure C). The models appeared to be slightly better calibrated for shorter forecast horizons (i.e. 1- and

2-week ahead) than for longer horizons. Forecasts for the peak percentage were less well calibrated, with

more forecasts than expected occuring in both low and high tails of the predictive distribution.

Across all training seasons, the FSNetwork-TTW model showed some lack of calibration for all targets consid-

ered (Figure B). In particular, the predictive distributions appeared to be too wide, with eventually observed

values falling in the central region of the distribution more than expected. A slight negative bias is evident

as well, from the skewness of the PIT figures, with the observed values more likely to fall under the median

of the distribution for 2-, 3-, and 4-week-ahead forecasts. However, these forecasts were evaluated on only

seven seasons worth of data, and given that the forecasts were better calibrated in a larger-than-usual season

such as 2017/2018 (Figure C) suggests that the model in the training phase may have been appropriately

allowing for the possibility of such a large season.

All in all, there could be some improvement in model calibration as measured by PIT. However, to date,

this has not been designated as an explicit target for optimization of the ensemble weighting schemes.

3 Updated weights incorporating 2017/2018 performance

See Figure D.

4



1 wk ahead

PIT values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

2 wk ahead

PIT values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3 wk ahead

PIT values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

4 wk ahead

PIT values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Season peak percentage

PIT values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure B: Probability integral transform histograms by target for the FSNetwork-TTW model in the
2017/2018 season. If the model is well-calibrated, the histogram should resemble a uniform distribution,
i.e. all the bars should be level at y=1. The red dashed lines represent a Monte Carlo confidence interval
under the null hypothesis that the PIT values follow a Uniform(0,1) distribution. The fact that some of
the bars for the season peak percentage target lie outside the CI bounds suggest that the model shows
significantly weak calibration for that particular target.
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Figure C: Probability integral transform histograms by target for the FSNetwork-TTW model in all training
seasons: 2010/2011 through 2016/2017. If the model is well-calibrated, the histogram should resemble a
uniform distribution, i.e. all the bars should be level at y=1. The red dashed lines represent a Monte Carlo
confidence interval under the null hypothesis that the PIT values follow a Uniform(0,1) distribution. The
intervals are narrower here than in Figure B because there are more observations from all the training seasons
combined than in the one testing season. The model is showing some significant lack of calibration for all
targets. In particular for the season peak percentage, substantially more observations were in the lowest
10% of the predictive distributions than would have been expected due to chance.
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1.00A: weights for FSNetwork−TTW model in 2017/2018 season
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Figure D: The change in the estimated weight for each model after including the 2017/2018 performance
results.
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4 Comparison of ensemble model performance in testing and train-

ing phases

To compare the training and test phase performance of the ensemble models, we plotted their relative

performance (Figure E). This shows that the FSNetwork-TTW model had the highest overall score in both

the training and test phase.
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Figure E: Overall test and training phase performance scores for the five ensemble models. Displayed scores
are averaged across targets, regions, and weeks, and plotted separately for selected models. Model ranks
within each row are indicated by color of each cell (darker colors indicate higher rank and more accurate
forecasts) and the forecast score (rounded to three decimal places) is printed in each cell.

5 Forecast accuracy across the 2017/2018 test season

We compared the average weekly accuracy of three models –FSNetwork-TTW, FSNetwork-EW, and ReichLab-KDE–

over time in the 2017/2018 test season (Figure F). This comparison showed that a performance-weighted

ensemble, FSNetwork-TTW, consistently outperformed an equally weighted ensemble, FSNetwork-EW, by a

small margin and a seasonal average model, ReichLab-KDE, by a larger margin. Accuracy for week-ahead

targets was substantially lower in the middle of the season.
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Figure F: Forecast scores averaged across all regions for three selected models in the 2017/2018 test season.
The x-axis shows the epidemic week (EW) of the season. Scores are only shown for scored weeks according
to FluSight guidelines (see Methods in original manuscript). Therefore, season onset scores are truncated
six weeks after the last season onset occurred. A vertical dashed line indicates January 1, 2018.
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6 EM Algorithm for Weighted Density Ensembles

The following is adapted from [14, 15] and describes the use of the Expectation Maximization (EM) algorithm

for constructing weighted average ensemble models in the context of infectious disease forecasting. Our goal

is to develop a weighted density ensemble that combines the full predictive distributions in such a way as to

optimize the score of the resulting model average.

To use the EM algorithm to find optimal weights, we formulate the question as a missing data problem.

We consider a data generating process in which an observed target is generated from f(z) by choosing one

of the fc(z) component distributions as a random draw from a multinomial distribution with probabilities

πc. Here we supress the subscripts for target, region and week (t, r, and w) for simplicity. The problem is

that we do not know, for each observed datapoint z∗i , which component this observation was drawn from.

However, we can make a best guess, conditional on the data and our current estimates of πc, of how often

each component was chosen. This is the “E step”. Then, based on these guesses, we can update our estimate

of πc. This is the “M-step”.

The “E step” of the EM algorithm we can think of as determining, for each component c, the expected

number of times for each of our observed N datapoints that component c was chosen as the contributor to

f(z):

E[modelc|data] =
∑
i

πcfc(z
∗
i )

f(z∗i )
(1)

Heuristically, we can think of the expression fc(z) equivalently as Pr(z|modelc) or in words the likelihood

of seeing the value z given that component c is the “chosen” model.

The “M step” of the EM algorithm simply calculates, conditional on the “complete data”, i.e. the z∗i and

the estimated number of times each component was chosen, the fraction of times each method was chosen.

Therefore, if we simply divide the quantity from the “E-step” by N , our total number of observations, we

obtain a new estimate of this probability:

π(k+1)
c =

1

N
E[modelc|data] (2)

=
1

N

∑
i

π
(k)
c fc(z

∗
i )

f(z∗i )
(3)

Assume that we have a set of C fitted predictive densities “evaluated at” observed data z∗i for i = 1, ..., N .

In our application, we let the fc(z
∗
i ) be computed as the probabilities associated with the modified scores as

described in the main manuscript. As an example, for season peak percentage and the short-term forecasts,

probabilities assigned to wILI values within 0.5 units of the observed values are included as correct, so the

modified score becomes fc(z
∗
i ) =

∫ z∗i +.5
z∗
i
−.5 fc(z|x)dz. We will notate these scores as fc(z

∗
i |x). There will be

C ·N total observations, as each model must have an associated score (a probability, between 0 and 1) for

each observed data point.

We wish to obtain a set of optimal weights π̃ = {π̃1, π̃2, ..., π̃C} for combining the models such that ∀c π̃c ≥ 0

and
∑C
c=1 π̃c = 1. The weights can be used to then combine the component models into an ensemble model
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as

f(z|π) =

C∑
c=1

πcfc(z).

We define a function `(π) that computes a log-likelihood of the resulting ensemble as follows:

`(π) =
1

N

N∑
i=1

log f(zi|π).

Below, we define one procedure to obtain a set of weights for the ensemble.

Algorithm 1 Degenerate Expectation Maximization (DEM) algorithm

1: procedure dem(...)

2: Initialize π
(0)
c such that ∀c π(0)

c ≥ 0 and
∑C
c=1 π

(0)
c = 1

3: Set t = 0
4: Set ∆ = 1, or another arbitrary constant.
5: Set ε to be a very small positive number strictly less than ∆.
6: while ∆ > ε do
7: Set t = t+ 1

8: Update weights, ∀c, π(t)
c = 1

N

∑N
i=1

π(t−1)
c fc(zi)

f(zi|π(t−1))

9: Set ∆ = `(π(t))−`(π(t−1))
|`(π(t))|

10: return π̃ = π̃(t)

And note that in Algorithm 1, Step 9 it should always be the case that `(t) ≥ `(t− 1).

We note that this application of the EM algorithm is a very simple example of the standard EM, which in

general does not guarantee a global maximum. However, this particular log-likelihood function (a sum of

logarithms of weighted sums) is a convex function of its parameters, the πc, and convexity ensures that any

local maximum is a global maximum [16]. In particular, we can ensure that there is a global, finite maximum

and that the EM finds it by including a uniform component and making the algorithm start with all nonzero

weights.
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